Covering Scientific & Technical AI | Saturday, January 11, 2025

AWS Announces Nine New Compute and Networking Innovations for Amazon EC2 

SEATTLE, Dec. 4, 2019-- Today at AWS re:Invent, Amazon Web Services, Inc. (AWS), an Amazon.com company, announced nine new Amazon Elastic Compute Cloud (EC2) innovations. AWS already has more compute and networking capabilities than any other cloud provider, including the most powerful GPU instances, the fastest processors, and the only cloud with 100 Gbps connectivity for standard instances. Today, AWS added to its industry-leading compute and networking innovations with new Arm-based instances (M6g, C6g, R6g) powered by AWS-designed processors in Graviton2, machine learning inference instances (Inf1) powered by AWS-designed Inferentia chips, a new Amazon EC2 feature that uses machine learning to cost and performance optimize Amazon EC2 usage, and networking enhancements that make it easier for customers to scale, secure, and manage their workloads in AWS.

New Arm-based versions of Amazon EC2 M, R, and C instance families, powered by new AWS-designed AWS Graviton2 processors, deliver up to 40% improved price/performance over comparable x86-based instances

Since their introduction a year ago, Arm-based Amazon EC2 A1 instances (powered by AWS's first version of Graviton chips) have provided customers with significant cost savings by running scale-out workloads like containerized microservices and web tier applications. Based on the cost savings, combined with increasing and significant support for Arm from a broader ecosystem of operating system vendors (OSVs) and independent software vendors (ISVs), customers now want to be able to run more demanding workloads with varying characteristics on AWS Graviton-based instances, including compute-heavy data analytics and memory intensive data stores. These diverse workloads require enhanced capabilities beyond those supported by A1 instances, such as faster processing, higher memory capacity, increased networking bandwidth, and larger instance sizes.

The new Arm-based versions of Amazon EC2 M, R, and C instance families, powered by new AWS-designed Graviton2 processors, deliver up to 40% better price/performance than current x86 processor-based M5, R5, and C5 instances for a broad spectrum of workloads, including high performance computing, machine learning, application servers, video encoding, microservices, open source databases, and in-memory caches. These new Arm-based instances are powered by the AWS Nitro System, a collection of custom AWS hardware and software innovations that enable the delivery of efficient, flexible, and secure cloud services with isolated multi-tenancy, private networking, and fast local storage, to reduce customer spend and effort when using AWS. AWS Graviton2 processors introduce several new performance optimizations versus the first generation. AWS Graviton2 processors use 64-bit Arm Neoverse cores and custom silicon designed by AWS, built using advanced 7 nanometer manufacturing technology. Optimized for cloud native applications, AWS Graviton2 processors provide 2x faster floating point performance per core for scientific and high performance computing workloads, optimized instructions for faster machine learning inference, and custom hardware acceleration for compression workloads. AWS Graviton2 processors also offer always-on fully encrypted DDR4 memory and provide 50% faster per core encryption performance to further enhance security. AWS Graviton2 powered instances provide up to 64 vCPUs, 25 Gbps of enhanced networking, and 18 Gbps of EBS bandwidth. Customers can also choose NVMe SSD local instance storage variant (C6gd, M6gd, and R6gd), or bare metal options for all of the new instance types. The new instance types are supported by several open source software distributions (Amazon Linux 2, Ubuntu, Red Hat Enterprise Linux, SUSE Linux Enterprise Server, Fedora, Debian, FreeBSD, as well as the Amazon Corretto distribution of OpenJDK), container services (Docker Desktop, Amazon ECS, Amazon EKS), agents (Amazon CloudWatch, AWS Systems Manager, Amazon Inspector), and developer tools (AWS Code Suite, Jenkins). Already, AWS services like Amazon Elastic Load Balancing, Amazon ElastiCache, and Amazon Elastic Map Reduce have tested the AWS Graviton2 instances, found they deliver superior price/performance, and plan to move them into production in 2020. M6g instances are available today in preview. C6g, C6gd, M6gd, R6g and R6gd instances will be available in the coming months. To learn more about AWS Graviton2 powered instances visit: https://aws.amazon.com/ec2/graviton.

Amazon EC2 Inf1 instances powered by AWS Inferentia chips deliver high performance and the lowest cost machine learning inference in the cloud

Customers across a diverse set of industries are turning to machine learning to address common use cases (e.g. personalized shopping recommendations, fraud detection in financial transactions, increasing customer engagement with chatbots, etc.). Many of these customers are evolving their use of machine learning from running experiments to scaling up production machine learning workloads where performance and efficiency really matter. Customers want high performance for their machine learning applications in order to deliver the best possible end user experience. While training rightfully receives a lot of attention, inference actually accounts for the majority of complexity and the cost (for every dollar spent on training, up to nine are spent on inference) of running machine learning in production, which can limit much broader usage and stall customer innovation. Additionally, several real-time machine learning applications are sensitive to how quickly an inference is executed (latency), while other batch workloads need to be optimized for how many inferences can be processed per second (throughput), requiring customers to choose between processors optimized for latency or throughput.

With Amazon EC2 Inf1 instances, customers receive high performance and the lowest cost for machine learning inference in the cloud, and no longer need to make the sub-optimal tradeoff between optimizing for latency or throughput when running large machine learning models in production. Amazon EC2 Inf1 instances feature AWS Inferentia, a high performance machine learning inference chip designed by AWS. AWS Inferentia delivers very high throughput, low latency, and sustained performance for extremely cost-effective real-time and batch inference applications. AWS Inferentia provides 128 Tera operations per second (TOPS or trillions of operations per second) per chip and up to two thousand TOPS per Amazon EC2 Inf1 instance for multiple frameworks (including TensorFlow, PyTorch, and Apache MXNet), and multiple data types (including INT-8 and mixed precision FP-16 and bfloat16). Amazon EC2 Inf1 instances are built on the AWS Nitro System, a collection of custom AWS hardware and software innovations that enable the delivery of efficient, flexible, and secure cloud services with isolated multi-tenancy, private networking, and fast local storage, to reduce customer spend and effort when using AWS. Amazon EC2 Inf1 instances deliver low inference latency, up to 3x higher inference throughput, and up to 40% lower cost-per-inference than the Amazon EC2 G4 instance family, which was already the lowest cost instance for machine learning inference available in the cloud. Using Amazon EC2 Inf1 instances, customers can run large scale machine learning inference to perform tasks like image recognition, speech recognition, natural language processing, personalization, and fraud detection at the lowest cost in the cloud. Amazon EC2 Inf1 instances can be deployed using AWS Deep Learning AMIs and will be available via managed services such as Amazon SageMaker, Amazon Elastic Containers Service (ECS), and Amazon Elastic Kubernetes Service (EKS). To get started with Amazon EC2 Inf1 instances visit: https://aws.amazon.com/ec2/instance-types/inf1.

AWS Compute Optimizer uses a machine learning-powered instance recommendation engine to make it easy to choose the right compute resources

Choosing the right compute resources for a workload is an important task. Over-provisioning resources can lead to unnecessary cost, and under-provisioning can lead to poor performance. Up until today, to optimize use of Amazon EC2 resources, customers have allocated systems engineers to analyze resource utilization and performance data, or invested in resources to run application simulations on a variety of workloads. And, this effort can add up over time because the resource selection process must be repeated as applications and usage patterns change, new applications move into production, and new hardware platforms become available. As a result, customers sometimes leave their resources inefficiently-sized, pay for expensive third-party solutions, or build optimization solutions themselves that manage their Amazon EC2 usage.

AWS Compute Optimizer delivers intuitive and easily actionable AWS resource recommendations so customers can identify optimal Amazon EC2 instance types, including those that are a part of Auto Scaling groups, for their workloads, without requiring specialized knowledge or investing substantial time and money. AWS Compute Optimizer analyzes the configuration and resource utilization of a workload to identify dozens of defining characteristics (e.g. whether a workload is CPU-intensive, or if it exhibits a daily pattern). AWS Compute Optimizer uses machine learning algorithms that AWS has built to analyze these characteristics and identify the hardware resource headroom required by the workload. Then, AWS Compute Optimizer infers how the workload would perform on various Amazon EC2 instances, and makes recommendations for the optimal AWS compute resources for that specific workload. Customers can activate AWS Compute Optimizer with a few clicks in the AWS Management Console. Once activated, AWS Compute Optimizer immediately starts analyzing running AWS resources, observing their configurations and Amazon CloudWatch metrics history, and generating recommendations based upon their characteristics. To get started with AWS Compute Optimizer, visit http://aws.amazon.com/compute-optimizer.

Amazon also announced:

  • AWS Transit Gateway now supports native IP multicast protocol, integrates with SD-WAN partners to enable easier and faster connectivity between customers’ branch offices and AWS, and provides a new capability to make it much easier to manage and monitor their global network from a single pane of glass
  • VPC Ingress Routing allows customers to easily deploy third-party appliances in their VPC for specialized networking and security functions

To get all the details, visit: https://press.aboutamazon.com/news-releases/news-release-details/aws-announces-nine-new-compute-and-networking-innovations-amazon

About Amazon Web Services

For 13 years, Amazon Web Services has been the world’s most comprehensive and broadly adopted cloud platform. AWS offers over 165 fully featured services for compute, storage, databases, networking, analytics, robotics, machine learning and artificial intelligence (AI), Internet of Things (IoT), mobile, security, hybrid, virtual and augmented reality (VR and AR), media, and application development, deployment, and management from 69 Availability Zones (AZs) within 22 geographic regions, with announced plans for 13 more Availability Zones and four more AWS Regions in Indonesia, Italy, South Africa, and Spain . Millions of customers—including the fastest-growing startups, largest enterprises, and leading government agencies—trust AWS to power their infrastructure, become more agile, and lower costs. To learn more about AWS, visit aws.amazon.com.

About Amazon

Amazon is guided by four principles: customer obsession rather than competitor focus, passion for invention, commitment to operational excellence, and long-term thinking. Customer reviews, 1-Click shopping, personalized recommendations, Prime, Fulfillment by Amazon, AWS, Kindle Direct Publishing, Kindle, Fire tablets, Fire TV, Amazon Echo, and Alexa are some of the products and services pioneered by Amazon. For more information, visit amazon.com/about and follow @AmazonNews.


Source: Amazon 

AIwire