NVIDIA To Present AI Graphics Research at SIGGRAPH
Around 20 NVIDIA Research papers advancing generative AI and neural graphics — including collaborations with over a dozen universities in the U.S., Europe and Israel — are headed to SIGGRAPH 2023, the premier computer graphics conference, taking place Aug. 6-10 in Los Angeles.
The papers include generative AI models that turn text into personalized images; inverse rendering tools that transform still images into 3D objects; neural physics models that use AI to simulate complex 3D elements with stunning realism; and neural rendering models that unlock new capabilities for generating real-time, AI-powered visual details.
Innovations by NVIDIA researchers are regularly shared with developers on GitHub and incorporated into products, including the NVIDIA Omniverse platform for building and operating metaverse applications and NVIDIA Picasso, a recently announced foundry for custom generative AI models for visual design. Years of NVIDIA graphics research helped bring film-style rendering to games, like the recently released Cyberpunk 2077 Ray Tracing: Overdrive Mode, the world’s first path-traced AAA title.
The research advancements presented this year at SIGGRAPH will help developers and enterprises rapidly generate synthetic data to populate virtual worlds for robotics and autonomous vehicle training. They’ll also enable creators in art, architecture, graphic design, game development and film to more quickly produce high-quality visuals for storyboarding, previsualization and even production.
AI With a Personal Touch: Customized Text-to-Image Models
Generative AI models that transform text into images are powerful tools to create concept art or storyboards for films, video games and 3D virtual worlds. Text-to-image AI tools can turn a prompt like “children’s toys” into nearly infinite visuals a creator can use for inspiration — generating images of stuffed animals, blocks or puzzles.
However, artists may have a particular subject in mind. A creative director for a toy brand, for example, could be planning an ad campaign around a new teddy bear and want to visualize the toy in different situations, such as a teddy bear tea party. To enable this level of specificity in the output of a generative AI model, researchers from Tel Aviv University and NVIDIA have two SIGGRAPH papers that enable users to provide image examples that the model quickly learns from.
One paper describes a technique that needs a single example image to customize its output, accelerating the personalization process from minutes to roughly 11 seconds on a single NVIDIA A100 Tensor Core GPU, more than 60x faster than previous personalization approaches.
A second paper introduces a highly compact model called Perfusion, which takes a handful of concept images to allow users to combine multiple personalized elements — such as a specific teddy bear and teapot — into a single AI-generated visual:
Serving in 3D: Advances in Inverse Rendering and Character Creation
Once a creator comes up with concept art for a virtual world, the next step is to render the environment and populate it with 3D objects and characters. NVIDIA Research is inventing AI techniques to accelerate this time-consuming process by automatically transforming 2D images and videos into 3D representations that creators can import into graphics applications for further editing.
A third paper created with researchers at the University of California, San Diego, discusses tech that can generate and render a photorealistic 3D head-and-shoulders model based on a single 2D portrait — a major breakthrough that makes 3D avatar creation and 3D video conferencing accessible with AI. The method runs in real time on a consumer desktop, and can generate a photorealistic or stylized 3D telepresence using only conventional webcams or smartphone cameras.
A fourth project, a collaboration with Stanford University, brings lifelike motion to 3D characters. The researchers created an AI system that can learn a range of tennis skills from 2D video recordings of real tennis matches and apply this motion to 3D characters. The simulated tennis players can accurately hit the ball to target positions on a virtual court, and even play extended rallies with other characters.
Beyond the test case of tennis, this SIGGRAPH paper addresses the difficult challenge of producing 3D characters that can perform diverse skills with realistic movement — without the use of expensive motion-capture data.
Read the entire blog at this link.
Source: Aaron Lefohn, Nvidia